Ultra-High Intensity
Unique OPCPA based laser system, providing 5 terawatts of output power at 1 kHz repetition rate has been produced by Ekspla and Light Conversion consortium. Sylos 1 named system is generating 10 fs or shorter pulses and was designed and built for Extreme Light Infrastructure – Attosecond Light Pulse Source facilities (ELI-ALPS) located in Szeged, Hungary

Ultra-high intensity laser applications span a number of scientific disciplines, such as plasma physics and fusion research, atomic molecular & optical physics, femtosecond chemistry, astrophysics, high energy physics, materials science, biology, and medicine.

Areas where a strong impact is possible include:

  • High harmonic generation and attosecond science
  • Relativistic effects in interactions with atoms, molecules and electrons
  • Ultrafast X-ray science
  • High density science
  • Fusion energy research
  • Particle accelerators
  • Thomson scattering


Found total :
10 articles, 10 selected
Product selected :
All Products
All Products
High Energy Laser Systems – Unique laser systems for extreme applications
NL120 series – SLM Q-switched Nd:YAG lasers
NL310 series – high energy Q-switched Nd:YAG lasers
APL2200 series – high energy kHz repetition rate picosecond amplifiers
APL2100 series – high energy picosecond amplifiers
APL4206 series – high energy picosecond amplifiers
NL940 series – high energy temporaly shaped nanosecond Nd:YAG lasers
ANL series – high energy temporaly shaped nanosecond Nd:YAG lasers
SYLOS 2A system – highest average power produced by a multi‑TW few‑cycle OPCPA system
Femtosecond Lasers
UltraFlux FT300 – tunable wavelength femtosecond laser system
UltraFlux FF/FT 5000 – high energy tunable wavelength femtosecond laser systems
Nanosecond Lasers
NL300 series – compact flash-lamp pumped Q-switched Nd:YAG lasers
Picosecond Lasers
SL230 series – SBS compressed picosecond DPSS Nd:YAG lasers

The ELI-ALPS facility: the next generation of attosecond sources

Related products:  SYLOS 2A system

Authors:  S. Kühn, M. Dumergue, S. Kahaly, S. Mondal, M. Füle, T. Csizmadia, B. Farkas, B. Major, Z. Várallyay, E. Cormier, M. Kalashnikov, F. Calegari, M. Devetta, F. Frassetto, E. Månsson, L. Poletto, S. Stagira, C. Vozzi, M. Nisoli, P. Rudawski, S. Maclot, F. Campi, H. Wikmark and etc.

This review presents the technological infrastructure that will be available at the Extreme Light Infrastructure Attosecond Light Pulse Source (ELI-ALPS) international facility. ELI-ALPS will offer to the international scientific community ultrashort pulses in the femtosecond and attosecond domain for time-resolved investigations with unprecedented levels of high quality characteristics. The laser sources and the attosecond beamlines available at the facility will make attosecond technology accessible for scientists lacking access to these novel tools. Time-resolved investigation of systems of increasing complexity is envisaged using the end stations that will be provided at the facility.

Published: 2017.   Source: J. Phys. B: At. Mol. Opt. Phys. 50 132002

Development and characterization of a laser-plasma soft X-ray source for contact microscopy

Related products:  NL120 series NL310 series NL300 series SL230 series

Authors:  M.G. Ayele, P.W. Wachulak, J. Czwartos, D. Adjei, A. Bartnik, Ł. Wegrzynski, M. Szczurek, L. Pina, H. Fiedorowicz

In this work, we present a compact laser-produced plasma source of X-rays, developed and characterized for application in soft X-ray contact microscopy (SXCM). The source is based on a double stream gas puff target, irradiated with a commercially available Nd:YAG laser, delivering pulses with energy up to 740 mJ and 4 ns pulse duration at 10 Hz repetition rate. The target is formed by pulsed injection of a stream of high-Z gas (argon) into a cloud of low Z-gas (helium) by using an electromagnetic valve with a double nozzle setup. The source is designed to irradiate specimens, both in vacuum and in helium atmosphere with nanosecond pulses of soft X-rays in the ‘‘water-window” spectral range. The source is capable of delivering a photon fluence of about 1.09 x 103 photon/µm2/pulse at a sample placed in vacuum at a distance of about 20 mm downstream the source. It can also deliver a photon fluence of about 9.31 x 102 - photons/µm2/pulse at a sample placed in a helium atmosphere at the same position. The source design and results of the characterization measurements as well as the optimization of the source are presented and discussed. The source was successfully applied in the preliminary experiments on soft X-ray contact microscopy and images of microstructures and biological specimens with ~80 nm half-pitch spatial resolution, obtained in helium atmosphere, are presented.

Published: 2017.   Source: Nuclear Instruments and Methods in Physics Research B 411 (2017) 35–43

EUV spectra from highly charged terbium ions in optically thin and thick plasmas

Related products:  NL310 series NL300 series SL230 series

Authors:  C Suzuki, F Koike, I Murakami, N Tamura, S Sudo, E Long, J Sheil, E White, F O'Reilly, E Sokell, P Dunne, G O'Sullivan

We have observed extreme ultraviolet (EUV) spectra from terbium (Tb) ions in optically thin and thick plasmas for a comparative study. The experimental spectra are recorded in optically thin, magnetically conned torus plasmas and dense laser-produced plasmas (LPPs). The main feature of the spectra is quasicontinuum emission with a peak around 6.5-6.6 nm, the bandwidth of which is narrower in the torus plasmas than in the LPPs. A comparison between the two types of spectra also suggests strong opacity effects in the LPPs. A comparison with the calculated line strength distributions gives a qualitative interpretation of the observed spectra.

Published: 2015.   Source: Journal of Physics: Conference Series 583 (2015) 012007 (2015)

XUV generation from the interaction of pico- and nanosecond laser pulses with nanostructured targets

Related products:  NL310 series NL300 series SL230 series

Authors:  E. F. Barte, R. Lokasani, J. Proska, L. Stolcova, O. Maguire, D. Kos, P. Sheridan, F. O’Reilly, E. Sokell, T. McCormack, G. O’Sullivan, P. Dunne, J. Limpouch

Laser-produced plasmas are intense sources of XUV radiation that can be suitable for different applications such as extreme ultraviolet lithography, beyond extreme ultraviolet lithography and water window imaging. In particular, much work has focused on the use of tin plasmas for extreme ultraviolet lithography at 13.5 nm. We have investigated the spectral behavior of the laser produced plasmas formed on closely packed polystyrene microspheres and porous alumina targets covered by a thin tin layer in the spectral region from 2.5 to 16 nm. Nd:YAG lasers delivering pulses of 170 ps (Ekspla SL312P )and 7 ns (Continuum Surelite) duration were focused onto the nanostructured targets coated with tin. The intensity dependence of the recorded spectra was studied; the conversion efficiency (CE) of laser energy into the emission in the 13.5 nm spectral region was estimated. We have observed an increase in CE using high intensity 170 ps Nd:YAG laser pulses as compared with a 7 ns pulse.

Published: 2017.   Source: SPIE 10243, X-ray Lasers and Coherent X-ray Sources: Development and Applications, 1024315 (2017);

Conversion efficiency of a laser-plasma source based on a Xe jet in the vicinity of a wavelength of 11 nm

Related products:  NL310 series NL300 series SL230 series

Authors:  N. I. Chkhalo, S. A. Garakhin, A. Ya. Lopatin, A. N. Nechay, A. E. Pestov, V. N. Polkovnikov, N. N. Salashchenko, N. N. Tsybin, S. Yu. Zuev

We optimized the parameters of a laser-produced plasma source based on a solid-state Nd: YAG laser (λ = 1.06 nm, pulse duration 4 ns, energy per pulse up to 500 mJ, repetition rate 10 Hz, lens focus distance 45 mm, maximum power density of laser radiation in focus 9 x 1011 W/cm2) and a double-stream Xe/He gas jet to obtain a maximum of radiation intensity around 11 nm wavelength. It was shown that the key factor determining the ionization composition of the plasma is the jet density.With the decreased density, the ionization composition shifts toward a smaller degree of ionization, which leads to an increase in emission peak intensity around 11 nm.We attribute the dominant spectral feature centred near 11 nm originating from an unidentified 4d-4f transition array in Xe+10...+13 ions. The exact position of the peak and the bandwidth of the emission line were determined. We measured the dependence of the conversion efficiency of laser energy into an EUV in-band energy with a peak at 10.82 nm from the xenon pressure and the distance between the nozzle and the laser focus. The maximum conversion efficiency (CE) into the spectral band of 10–12 nm measured at a distance between the nozzle and the laser beam focus of 0.5 mm was CE = 4.25 ± 0.30%. The conversion efficiencies of the source in-bands of 5 and 12 mirror systems at two wavelengths of 10.8 and 11.2 nm have been evaluated; these efficiencies may be interesting for beyond extreme ultraviolet lithography.

Published: 2018.   Source: AIP Advances 8, 105003 (2018)

53 W average power CEP-stabilized OPCPA system delivering 5.5 TW few cycle pulses at 1 kHz repetition rate

Related products:  UltraFlux FT300 UltraFlux FF/FT 5000 APL2200 series APL4206 series SYLOS 2A system

Authors:  R. Budriūnas, T. Stanislauskas, J. Adamonis, A. Aleknavičius, G. Veitas, D. Gadonas, S. Balickas, A. Michailovas, A. Varanavičius

We present a high peak and average power optical parametric chirped pulse amplification system driven by diode-pumped Yb:KGW and Nd:YAG lasers running at 1 kHz repetition rate. The advanced architecture of the system allows us to achieve >53 W average power combined with 5.5 TW peak power, along with sub-220 mrad CEP stability and sub-9 fs pulse duration at a center wavelength around 880 nm. Broadband, background-free, passively CEP stabilized seed pulses are produced in a series of cascaded optical parametric amplifiers pumped by the Yb:KGW laser, while a diode-pumped Nd:YAG laser system provides multi-mJ pump pulses for power amplification stages. Excellent stability of output parameters over 16 hours of continuous operation is demonstrated.

Published: 2017.   Source: Optical Society of America | Vol. 25, No. 5 | 6 Mar 2017 | OPTICS EXPRESS 5799

Spectral pulse shaping of a 5  Hz, multi-joule, broadband optical parametric chirped pulse amplification frontend for a 10  PW laser system

Related products:  NL940 series

Authors:  F. Batysta, R. Antipenkov, T. Borger, A. Kissinger, J. T. Green, R. Kananavičius, G. Chériaux, D. Hidinger, J. Kolenda, E. Gaul, B. Rus, T. Ditmire

We present a broadband optical parametric chirped pulse amplification (OPCPA) system delivering 4 J pulses at a repetition rate of 5 Hz. It will serve as a frontend for the 1.5 kJ, <150  fs, 10 PW laser beamline currently under development by a consortium of National Energetics and Ekspla. The spectrum of the OPCPA system is precisely controlled by arbitrarily generated waveforms of the pump lasers. To fully exploit the high flexibility of the frontend, we have developed a 1D model of the system and an optimization algorithm that predicts suitable pump waveform settings for a desired output spectrum. The OPCPA system is shown to have high efficiency, a high-quality top-hat beam profile, and an output spectrum demonstrated to be shaped consistently with the theoretical model.

Published: 2018.   Source: Optics Letters Vol. 43, Issue 16, pp. 3866-3869 (2018)

Characterization and calibration of the Thomson scattering diagnostic suite for the C-2W field-reversed configuration experiment

Related products:  ANL series

Authors:  A. Ottaviano, T. M. Schindler, K. Zhai, E. Parke, E. Granstedt, M. C. Thompson and the TAE Team

The new C-2W Thomson scattering (TS) diagnostic consists of two individual subsystems for monitoring electron temperature (Te) and density (ne): one system in the central region is currently operational, and the second system is being commissioned to monitor the open field line region. Validating the performance of the TS’s custom designed system components and unique calibration of the detection system and diagnostic as a whole is crucial to obtaining high precision Te and ne profiles of C-2W’s plasma. The major components include a diode-pumped Nd:YAG laser which produces 35 pulses at up to 20 kHz, uniquely designed collection lenses with a fast numerical aperture, and uniquely designed polychromators with filters sets to optimize a Te ranging from 10 eV to 2 keV. This paper describes the design principles and techniques used to characterize the main components of the TS diagnostic on C-2W, as well as the results of Rayleigh scattering calibrations performed for the whole system response.

Published: 2018.   Source: Review of Scientific Instruments 89, 10C120 (2018)

Thomson scattering systems on C-2W field-reversed configuration plasma experiment

Related products:  ANL series

Authors:  K. Zhai, T. Schindler, A. Ottaviano, H. Zhang, D. Fallah, J. Wells, E. Parke, M. C. Thompson and the TAE Team

TAE Technologies’ newly constructed C-2W experiment aims to improve the ion and electron temperature in a sustained field-reversed configuration plasma. A suite of Thomson scattering systems has been designed and constructed for electron temperature and density profile measurements. The systems are designed for electron densities of 1×1012 cm-3 to 2×1014 cm-3 and temperature ranges from 10 eV to 2 keV. The central system will provide profile measurements of Te and ne at 16 radial locations from r = -9 cm to r = 64 cm with a temporal resolution of 20 kHz for 4 pulses or 1 kHz for 30 pulses. The jet system will provide profile measurements of Te and ne at 5 radial locations in the open field region from r = -5 cm to r = 15 cm with a temporal resolution of 100 Hz. The central system and its components have been characterized, calibrated, installed and commissioned. A maximum-likelihood algorithm has been applied for data processing and analysis.

Published: 2018.   Source: Review of Scientific Instruments 89, 10C118 (2018)

Emission properties of ns and ps laser-induced soft x-ray sources using pulsed gas jets

Related products:  SL230 series APL2100 series

Authors:  M. Müller, F.-Ch. Kühl, P. Großmann, P. Vrba, K. Mann

The influcence of the pulse duration on the emission characteristics of nearly debris-free laser-induced plasmas in the soft x-ray region (λ ≈1-5 nm) was investigated, using six different target gases from a pulsed jet. Compared to ns pulses of the same energy, a ps laser generates a smaller, more strongly ionized plasma, being about 10 times brighter than the ns laser plasma. Moreover, the spectra are considerably shifted towards shorter wavelengths. Electron temperatures and densities of the plasma are obtained by comparing the spectra with model calculations using a magneto-hydrodynamic code.

Published: 2013.   Source: Opt. Express 21, 12831-12842 (2013)
Photoacoustic Imaging
Courtesy of PhotoSound Technologies, Inc.

Photoacoustic imaging is a valuable high-contrast in vivo imaging technique for pre-clinical and clinical applications. This technique uses laser-induced ultrasound.

Ultrasound signal is generated in tissue, when it absorbs tunable wavelength laser light and expands thermo-elastically,  and their waves are detected by ultrasonic transducers. 2D or 3D images are then reconstructed from the accumulated data.

Laser sources for photoacoustic imaging include lamp-pumped tunable wavelength and diode-pumped solid-state (DPSS) tunable wavelength  OPO systems.


Found total :
17 articles, 17 selected
Product selected :
All Products
All Products
Nanosecond Lasers
NL230 series – high energy Q-switched DPSS Nd:YAG lasers
Tunable Wavelength Devices – standalone and integrated OPO sytems
PhotoSonus – mobile high energy tunable wavelength laser system for photoacoustic imaging
PhotoSonus X – high output power DPSS tunable laser for photoacoustic imaging
NT230 series – high energy broadly tunable DPSS lasers
NT242 series – broadly tunable kHz pulsed DPSS lasers
NT270 series – tunable wavelength NIR-IR range DPSS lasers
NT342 series – high energy broadly tunable lasers
NT350 series – high energy NIR range tunable lasers

Photoacoustic imaging of voltage responses beyond the optical diffusion limit

Related products:  NT242 series

Authors:  Bin Rao, Ruiying Zhang, Lei Li, Jin-Yu Shao, Lihong V. Wang

Non-invasive optical imaging of neuronal voltage response signals in live brains is constrained in depth by the optical diffusion limit, which is due primarily to optical scattering by brain tissues. Although photoacoustic tomography breaks this limit by exciting the targets with diffused photons and detecting the resulting acoustic responses, it has not been demonstrated as a modality for imaging voltage responses. In this communication, we report the first demonstration of photoacoustic voltage response imaging in both in vitro HEK-293 cell cultures and in vivo mouse brain surfaces. Using spectroscopic photoacoustic tomography at isosbestic wavelengths, we can separate voltage response signals and hemodynamic signals on live brain surfaces. By imaging HEK-293 cell clusters through 4.5 mm thick ex vivo rat brain tissue, we demonstrate photoacoustic tomography of cell membrane voltage responses beyond the optical diffusion limit. Although the current voltage dye does not immediately allow in vivo deep brain voltage response imaging, we believe our method opens up a feasible technical path for deep brain studies in the future.

Published: 2017.   Source: Scientific Reports, vol. 7, art. 2560 (2017)

High-resolution, high-contrast mid-infrared imaging of fresh biological samples with ultraviolet-localized photoacoustic microscopy

Related products:  NT242 series NT270 series

Authors:  Junhui Shi, Terence T. W. Wong, Yun He, Lei Li, Ruiying Zhang, Christopher S. Yung, Jeeseong Hwang, Konstantin Maslov, Lihong V. Wang

Mid-infrared (MIR) microscopy provides rich chemical and structural information about biological samples, without staining. Conventionally, the long MIR wavelength severely limits the lateral resolution owing to optical diffraction; moreover, the strong MIR absorption of water ubiquitous in fresh biological samples results in high background and low contrast. To overcome these limitations, we propose a method that employs photoacoustic detection highly localized with a pulsed ultraviolet laser on the basis of the Grüneisen relaxation effect. For cultured cells, our method achieves water-background suppressed MIR imaging of lipids and proteins at ultraviolet resolution, at least an order of magnitude finer than the MIR diffraction limits. Label-free histology using this method is also demonstrated in thick brain slices. Our approach provides convenient high-resolution and high-contrast MIR imaging, which can benefit the diagnosis of fresh biological samples.

Published: 2019.   Source: Nature Photonics, vol. 13, pp. 609–615 (2019)

High-resolution, in vivo multimodal photoacoustic microscopy, optical coherence tomography, and fluorescence microscopy imaging of rabbit retinal neovascularization

Related products:  NT242 series

Authors:  Wei Zhang, Yanxiu Li, Van Phuc Nguyen, Ziyi Huang, Zhipeng Liu, Xueding Wang, Yannis M. Paulus

Photoacoustic microscopy (PAM) is an emerging imaging technology that can non-invasively visualize ocular structures in animal eyes. This report describes an integrated multimodality imaging system that combines PAM, optical coherence tomography (OCT), and fluorescence microscopy (FM) to evaluate angiogenesis in larger animal eyes. High-resolution in vivo imaging was performed in live rabbit eyes with vascular endothelial growth factor (VEGF)-induced retinal neovascularization (RNV). The results demonstrate that our multimodality imaging system can non-invasively visualize RNV in both albino and pigmented rabbits to determine retinal pathology using PAM and OCT and verify the leakage of neovascularization using FM and fluorescein dye. This work presents high-resolution visualization of angiogenesis in rabbits using a multimodality PAM, OCT, and FM system and may represent a major step toward the clinical translation of the technology.

Published: 2018.   Source: Light: Science & Applications, vol. 7, art. 103 (2018)

Photoacoustic transfection of DNA encoding GFP

Related products: 

Authors:  Alexandre D. Silva, Carlos Serpa, Luis G. Arnaut

Photoacoustic transfection consists in the use of photoacoustic waves, generated in the thermoelastic expansion of a confined material absorbing a short pulse of a laser, to produce temporary mechanical deformations of the cell membrane and facilitate the delivery of plasmid DNA into cells. We show that high stress gradients, produced when picosecond laser pulses with a fluence of 100 mJ/cm2 are absorbed by piezophotonic materials, enable transfection of a plasmid DNA encoding Green Fluorescent Protein (gWizGFP, 3.74 MDa) in COS-7 monkey fibroblast cells with an efficiency of 5% at 20 °C, in 10 minutes. We did not observe significant cytotoxicity under these conditions. Photoacoustic transfection is scalable, affordable, enables nuclear localization and the dosage is easily controlled by the laser parameters.

Published: 2019.   Source: Scientific Reports, vol. 9, art. 2553 (2019)

Optoacoustic brain stimulation at submillimeter spatial precision

Related products: 

Authors:  Y. Jiang, H.J. Lee, L. Lan, H. Tseng, Ch. Yang, H. Man, X. Han, J. Cheng

Low-intensity ultrasound is an emerging modality for neuromodulation. Yet, transcranial neuromodulation using low-frequency piezo-based transducers offers poor spatial confinement of excitation volume, often bigger than a few millimeters in diameter. In addition, the bulky size limits their implementation in a wearable setting and prevents integration with other experimental modalities. Here, we report spatially confined optoacoustic neural stimulation through a miniaturized Fiber-Optoacoustic Converter (FOC). The FOC has a diameter of 600 μm and generates omnidirectional ultrasound wave locally at the fiber tip through the optoacoustic effect. We show that the acoustic wave generated by FOC can directly activate individual cultured neurons and generate intracellular Ca2+ transients. The FOC activates neurons within a radius of 500 μm around the fiber tip, delivering superior spatial resolution over conventional piezo-based low-frequency transducers. Finally, we demonstrate direct and spatially confined neural stimulation of mouse brain and modulation of motor activity in vivo.

Published: 2020.   Source: Nature Communications volume 11, Article number: 881 (2020)

Optoacoustic effect is responsible for laser-induced cochlear responses

Related products:  NT342 series

Authors:  N. Kallweit, P. Baumhoff, A. Krueger, N. Tinne, A. Kral, T. Ripken, H. Maier

Optical stimulation of the cochlea with laser light has been suggested as an alternative to conventional treatment of sensorineural hearing loss with cochlear implants. The underlying mechanisms are controversially discussed: The stimulation can either be based on a direct excitation of neurons, or it is a result of an optoacoustic pressure wave acting on the basilar membrane. Animal studies comparing the intra-cochlear optical stimulation of hearing and deafened guinea pigs have indicated that the stimulation requires intact hair cells. Therefore, optoacoustic stimulation seems to be the underlying mechanism. The present study investigates optoacoustic characteristics using pulsed laser stimulation for in vivo experiments on hearing guinea pigs and pressure measurements in water. As a result, in vivo as well as pressure measurements showed corresponding signal shapes. The amplitude of the signal for both measurements depended on the absorption coefficient and on the maximum of the first time-derivative of laser pulse power (velocity of heat deposition). In conclusion, the pressure measurements directly demonstrated that laser light generates acoustic waves, with amplitudes suitable for stimulating the (partially) intact cochlea. These findings corroborate optoacoustic as the basic mechanism of optical intra-cochlear stimulation.

Published: 2016.   Source: Scientific Reports 6, 28141 (2016)

Magneto-elasto-electroporation (MEEP): In-vitro visualization and numerical characteristics

Related products:  NT342 series

Authors:  S. Betal, B. Shrestha, M. Dutta, L.F. Cotica, E. Khachatryan, K. Nash, L. Tang, A.S. Bhalla, R. Guo

A magnetically controlled elastically driven electroporation phenomenon, or magneto-elasto-electroporation (MEEP), is discovered while studying the interactions between core-shell magnetoelectric nanoparticles (CSMEN) and biological cells in the presence of an a.c. magnetic field. In this paper we report the effect of MEEP observed via a series of in-vitro experiments using core (CoFe2O4)-shell (BaTiO3) structured magnetoelectric nanoparticles and human epithelial cells (HEP2). The cell electroporation phenomenon and its correlation with the magnetic field modulated CSMEN are described in detail. The potential application of CSMEN in electroporation is confirmed by analyzing crystallographic phases, multiferroic properties of the fabricated CSMEN, influences of d.c. and a.c. magnetic fields on the CSMEN and cytotoxicity tests. The mathematical formalism to quantitatively describe the phenomena is also reported. The reported findings provide insights into the underlying MEEP mechanism and demonstrate the utility of CSMEN as an electric pulse-generating nano-probe in electroporation experiments with a potential application toward accurate and efficient targeted cell permeation.

Published: 2016.   Source: Scientific Reports 6, 32019 (2016)

Contrast Agent Enhanced Multimodal Photoacoustic Microscopy and Optical Coherence Tomography for Imaging of Rabbit Choroidal and Retinal Vessels in vivo

Related products:  NT242 series

Authors:  V.P. Nguyen, Y. Li, W. Qian, B. Liu, C. Tian, W. Zhang, Z. Huang, A. Ponduri, M. Tarnowski, X. Wang, Y.M. Paulus

Multimodal imaging with photoacoustic microscopy (PAM) and optical coherence tomography (OCT) can be an effective method to evaluate the choroidal and retinal microvasculature. To improve the efficiency for visualizing capillaries, colloidal gold nanoparticles (AuNPs) have been applied as a multimodal contrast agent for both OCT and PAM imaging by taking advantage of the strong optical scattering and the strong optical absorption of AuNPs due to their surface plasmon resonance. Ultra-pure AuNPs were fabricated by femtosecond laser ablation, capped with polyethylene glycol (PEG), and administered to 13 New Zealand white rabbits and 3 Dutch Belted pigmented rabbits. The synthesized PEG-AuNPs (20.0 ± 1.5 nm) were demonstrated to be excellent contrast agents for PAM and OCT, and do not demonstrate cytotoxicity to bovine retinal endothelial cells in cell studies. The image signal from the retinal and choroidal vessels in living rabbits was enhanced by up to 82% for PAM and up to 45% for OCT, respectively, by the administered PEG-AuNPs, which enables detection of individual blood vessels by both imaging modalities. The biodistribution study demonstrated the AuNP accumulated primarily in the liver and spleen. Histology and TUNEL staining did not indicate cell injury or death in the lung, liver, kidney, spleen, heart, or eyes up to seven days after AuNP administration. PEG-AuNPs offer an efficient and safe contrast agent for multimodal ocular imaging to achieve improved characterization of microvasculature.

Published: 2019.   Source: Scientific Reports 9, 5945 (2019)

High-resolution multimodal photoacoustic microscopy and optical coherence tomography image-guided laser induced branch retinal vein occlusion in living rabbits

Related products:  NT242 series

Authors:  V.P. Nguyen, Y. Li, W. Zhang, X. Wang, Y. M. Paulus

Joint high-resolution multimodal photoacoustic microscopy (PAM) and optical coherence tomography (OCT) was developed to improve the efficiency for visualizing newly developed retinal neovascularization (RNV) and to monitor the dynamic changes of retinal vein occlusion (RVO) in living rabbits. The RNV and RVO models were created in New Zealand rabbits by Rose Bengal laser-induced RVO. Dual modalities imaging equipment, including color fundus photography, fluorescein angiography (FA), OCT, and PAM, was used to image and assess the changes of retinal vasculature. In vivo experimental results exhibited that not only the treatment boundaries and the position of the occluded vasculature but also the structure of individual RNV were markedly observed using PAM platform with great resolution and high image contrast. The laser light energy of 80 nJ was used to induce photoacoustic signal, which is approximately half the energy of the American National Standards Institute safety limit. A cross-sectional structure of RNV was identified with the OCT modality. Furthermore, vibrant transformations in the RNV and the retinal morphology were examined at different times after laser occlusion: days 4, 28, 35, 49, and 90. PAM revealed high contrast and high resolution vascular imaging of the retina and choroid with amplified penetration depth. Through the present custom-built imaging system, both RNV and RVO can be reconstructed and observed in two and three dimensions. A unique dual modality A unique dual modality PAM and OCT can help precisely visualize and distinguish individual microvessels, microvessel depth, and the surrounding anatomy. Thus, the proposed multimodal ocular imaging platform may offer a potential equipment to enhance classification of microvasculature in a reliable and proficient manner in larger rabbit eyes.

Published: 2019.   Source: Scientific Reports 9, 10560 (2019)

Photoacoustic/Ultrasound/Optical Coherence Tomography Evaluation of Melanoma Lesion and Healthy Skin in a Swine Model

Related products:  NL230 series

Authors:  K. Kratkiewicz, R. Manwar, A. Rajabi-Estarabadi, J. Fakhoury, J. Meiliute, S. Daveluy, D. Mehregan, and K. (Mohammad) Avanaki

The marked increase in the incidence of melanoma coupled with the rapid drop in the survival rate after metastasis has promoted the investigation into improved diagnostic methods for melanoma. High-frequency ultrasound (US), optical coherence tomography (OCT), and photoacoustic imaging (PAI) are three potential modalities that can assist a dermatologist by providing extra information beyond dermoscopic features. In this study, we imaged a swine model with spontaneous melanoma using these modalities and compared the images with images of nearby healthy skin. Histology images were used for validation.

Published: 2019.   Source: Sensors. 2019; 19(12):2815

Image Enchancement Algorithm of Photoacoustic Tomography using Active Countour Filtering

Related products:  PhotoSonus PhotoSonus X NT350 series

Authors:  P. Palaniappan, D. H. Shin, C. G. Song

The photoacoustic images are obtained from a custom developed linear array photoacoustic tomography system. The biological specimens are imitated by conducting phantom tests in order to retrieve a fully functional photoacoustic image. The acquired image undergoes the active region based contour filtering to remove the noise and accurately segment the object area for further processing. The universal vack projection method is used as the image reconstruction algorithm. The active contour filtering is analyzed by evaluating the signal to noise ratio and comparing it with the other filtering methods.

Published: 2016.   Source: World Academy of Science, Engineering and Technology International Journal of Computer and Information Engineering Vol:10, No:4, 2016

Detecting Rat’s Kidney Inflammation Using Real Time Photoacoustic Tomography

Related products:  PhotoSonus PhotoSonus X NT350 series

Authors:  M. Y. Lee, D. H. Shin, S. H. Park, W.C. Ham, S.K. Ko, C. G. Song

Photoacoustic Tomography (PAT) is a promising medical imaging modality that combines optical imaging contrast with the spatial resolution of ultrasound imaging. It can also distinguish the changes in biological features. But, real-time PAT system should be confirmed due to photoacoustic effect for tissue. Thus, we have developed a real-time PAT system using a custom-developed data acquisition board and ultrasound linear probe. To evaluate performance of our system, phantom test was performed. As a result of those experiments, the system showed satisfactory performance and its usefulness has been confirmed. We monitored the degradation of inflammation which induced on the rat’s kidney using real-time PAT.

Published: 2017.   Source: World Academy of Science, Engineering and Technology International Journal of Biotechnology and Bioengineering Vol:11, No:8, 2017

A Custom Developed Linear Array Photoacoustic Tomography for Noninvasive Medical Imaging

Related products:  PhotoSonus PhotoSonus X NT350 series

Authors:  P. Palaniappan, D. H. Shin, S. H. Park, M. Y. Lee, B. Y. Kim, S. Y. Lee, S. K. Go, C. G. Song

A real-time photoacoustic tomography which is capable of imaging the changes in biological features of living subject is presented. A custom developed data acquisition board and linear array transducer is used in this photoacoustic system. A phantom test were carried out to evaluate performance of the system. The developed system showed a satisfactory performance and its usefulness were evaluated. The universal back projection algorithm is used for image reconstruction and the sensitivity is analyzed from the obtained photoacoustic images.

Published: 2016.   Source: Event: 2016 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia)

Photoacoustic signal detection using interferometric fiber-optic ultrasound transducers

Related products:  PhotoSonus PhotoSonus X NT350 series

Authors:  A. D. Salas-Caridad, G. Martínez-Ponce, R. Martínez-Manuel

The cross-section of a metallic sample was photoacoustically imaged using a pulsed nanosecond laser as the excitation source and a fiber-optic hydrophone system to acquire the pressure signal. The ultrasound sensor was an extrinsic Fabry-Perot fiber-optic interferometer and the band-limited photodetected output signal was recorded in a digital oscilloscope. In order to reconstruct the image, a time set of ultrasound signals acquired in a circular scan around the sample were used to solve the time-reversal equations. It was observed that image contrast can be enhanced considering the deconvolution of the sensor frequency response from each measured pressure signal.

Published: 2017.   Source: Event: SPIE Optical Engineering + Applications, 2017, San Diego, California, United States

Hydrophones based on interferometric fiber-optic sensors with applications in photoacoustics

Related products:  PhotoSonus PhotoSonus X NT350 series

Authors:  A. D. Salas-Caridad, B. Eng.

Biomedical imaging used for medical diagnosis constantly requires improvement in the characteristics for imaging devices. The sensing devices are one of the most important pieces to improve in order to get images with better quality. In this thesis, it is proposed the use of interferometric fiber-optic sensors (which offer the advantages inherent to optical fibers) as devices to detect pressure/acoustic signals generated by the photoacoustic effect. It is explored the capability of using fiber-optic interferometric hydrophones in order to determine the thickness of a material derived from the acoustic signal generated when a sample is illuminated. In addition, the analysis of photoacoustic signals generated by the excitation of nanoparticles of an anisotropic material as absorption centers. Finally, the cross-section of a metallic sample was photoacoustically imaged by acquiring the pressure signals generated.

Published: 2017.   Source: Master of Optomechatronics | Leon, Guanajuato, Mexico

Enhancement of objects in photoacoustic tomography using selective filtering

Related products:  PhotoSonus PhotoSonus X NT350 series

Authors:  D. Shin, Y. Yang, C. G. Song

Here we developed a real-time photoacoustic tomography (PAT) imaging acquisition device based on the linear array transducer utilized on ultrasonic devices. Also, we produced a phantom including diverse contrast media and acquired PAT imaging as the light source wavelength was changing to see if the contrast media reacted. Indocyanine green showed the highest reaction around the 800-nm band, methylene blue demonstrated the same in the 750-nm band, and gold nanoparticle showed the same in the 700-nm band. However, in the case of superparamagnetic iron oxide, we observed not reaction within the wavelength bands used herein to obtain imaging. Moreover, we applied selective filtering to the acquired PAT imaging to remove noise from around and reinforce the object’s area. Consequentially, we could see the object area in the imaging was effectively detected and the image noise was removed.

Published: 2015.   Source: Bio-Medical Materials and Engineering 26 (2015) S1223–S1230

Hybrid Photoacoustic/Ultrasound tomograph for real time finger imaging

Related products:  PhotoSonus PhotoSonus X NT230 series

Authors:  M. Oeri, W. Bost, N. Sénégond, S. Tretbar, M. Fournelle

We report a target-enclosing, hybrid tomograph with a total of 768 elements based on capacitive micromachined ultrasound transducer technology and providing fast, high-resolution 2-D/3-D photoacoustic and ultrasound tomography tailored to finger imaging.A freely programmable ultrasound beamforming platform sampling data at 80 MHz was developed to realize plane wave transmission under multiple angles. A multiplexing unit enables the connection and control of a large number of elements. Fast image reconstruction is provided by GPU processing. The tomograph is composed of four independent and fully automated movable arc-shaped transducers, allowing imaging of all three finger joints. The system benefits from photoacoustics, yielding high optical contrast and enabling visualization of finger vascularization, and ultrasound provides morphologic information on joints and surrounding tissue. A diode-pumped, Q-switched Nd:YAG laser and an optical parametric oscillator are used to broaden the spectrum of emitted wavelengths to provide multispectral imaging. Custom-made optical fiber bundles enable illumination of the region of interest in the plane of acoustic detection. Precision in positioning of the probe in motion is ensured by use of a motor-driven guide slide. The current position of the probe is encoded by the stage and used to relate ultrasound and photoacoustic signals to the corresponding region of interest of the suspicious finger joint. The system is characterized in phantoms and a healthy human finger in vivo. The results obtained promise to provide new opportunities in finger diagnostics and establish photoacoustic/ultrasoundtomography in medical routine.

Published: 2017.   Source: Ultrasound in Med. & Biol., 2017